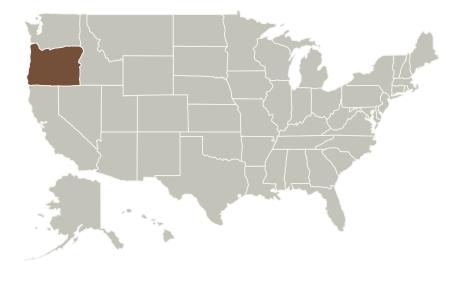
Space Technology Research Grants

Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

Completed Technology Project (2013 - 2016)


Project Introduction

A collaborative project between Oregon State University and Auburn University is proposed on the topic of heat rejection. A unique and innovative method of phase-change heat rejection (condensation) suitable for microgravity environment is proposed. The overall objective is to characterize the effects of surface microstructures on film dynamics and heat transfer rate by variation of the microstructure size or surface conditions. The key innovation lies in the surface microstructure design of the condenser, which is in the form of repeating asymmetric ratchets. Together with an innovative evaporator design that is being currently developed by the PIs, the condenser will result in a phase-change thermal management loop that is capable of removing moderate heat fluxes, is passive with no electrical input or moving parts, is self-regulating, reliable and lightweight. The proposed technology is expected to exit the project period at TRL 2.

Anticipated Benefits

Together with an innovative evaporator design that is being currently developed by the PIs, the condenser will result in a phase-change thermal management loop that is capable of removing moderate heat fluxes, is passive with no electrical input or moving parts, is self-regulating, reliable and lightweight.

Primary U.S. Work Locations and Key Partners

Project Image Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

Table of Contents

Project Introduction	1	
Anticipated Benefits	1	
Primary U.S. Work Locations		
and Key Partners	1	
Images	2	
Project Website:		
Organizational Responsibility		
Project Management	2	
Technology Maturity (TRL)	2	
Technology Areas	2	

Space Technology Research Grants

Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

Completed Technology Project (2013 - 2016)

Organizations Performing Work	Role	Туре	Location
Oregon State	Supporting	Academia	Corvallis,
University	Organization		Oregon

Primary U.S. Work Locations

Oregon

Images

11965-1363028376337.jpg
Project Image Enabling SelfPropelled Condensate Flow During
Phase-Change Heat Rejection Using
Surface Texturing
(https://techport.nasa.gov/imag
e/1694)

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

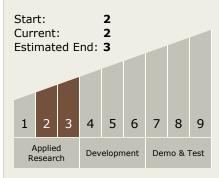
Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer


Program Manager:

Hung D Nguyen

Principal Investigator:

Vinod Narayanan

Technology Maturity (TRL)

Technology Areas

Primary:

Continued on following page.

Space Technology Research Grants

Enabling Self-Propelled Condensate Flow During Phase-Change Heat Rejection Using Surface Texturing

Completed Technology Project (2013 - 2016)

Technology Areas (cont.)

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 Rejection and Storage

